3.80 \(\int \frac{\cos ^3(c+d x)}{(a+a \sin (c+d x))^3} \, dx\)

Optimal. Leaf size=39 \[ -\frac{2}{d \left (a^3 \sin (c+d x)+a^3\right )}-\frac{\log (\sin (c+d x)+1)}{a^3 d} \]

[Out]

-(Log[1 + Sin[c + d*x]]/(a^3*d)) - 2/(d*(a^3 + a^3*Sin[c + d*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.0505272, antiderivative size = 39, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.095, Rules used = {2667, 43} \[ -\frac{2}{d \left (a^3 \sin (c+d x)+a^3\right )}-\frac{\log (\sin (c+d x)+1)}{a^3 d} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^3/(a + a*Sin[c + d*x])^3,x]

[Out]

-(Log[1 + Sin[c + d*x]]/(a^3*d)) - 2/(d*(a^3 + a^3*Sin[c + d*x]))

Rule 2667

Int[cos[(e_.) + (f_.)*(x_)]^(p_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[1/(b^p*f), S
ubst[Int[(a + x)^(m + (p - 1)/2)*(a - x)^((p - 1)/2), x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, m}, x]
&& IntegerQ[(p - 1)/2] && EqQ[a^2 - b^2, 0] && (GeQ[p, -1] ||  !IntegerQ[m + 1/2])

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rubi steps

\begin{align*} \int \frac{\cos ^3(c+d x)}{(a+a \sin (c+d x))^3} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{a-x}{(a+x)^2} \, dx,x,a \sin (c+d x)\right )}{a^3 d}\\ &=\frac{\operatorname{Subst}\left (\int \left (\frac{1}{-a-x}+\frac{2 a}{(a+x)^2}\right ) \, dx,x,a \sin (c+d x)\right )}{a^3 d}\\ &=-\frac{\log (1+\sin (c+d x))}{a^3 d}-\frac{2}{d \left (a^3+a^3 \sin (c+d x)\right )}\\ \end{align*}

Mathematica [A]  time = 0.063166, size = 58, normalized size = 1.49 \[ -\frac{\sin (c+d x) \log (\sin (c+d x)+1)+\log (\sin (c+d x)+1)+2}{a^3 d \left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )^2} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^3/(a + a*Sin[c + d*x])^3,x]

[Out]

-((2 + Log[1 + Sin[c + d*x]] + Log[1 + Sin[c + d*x]]*Sin[c + d*x])/(a^3*d*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2]
)^2))

________________________________________________________________________________________

Maple [A]  time = 0.072, size = 37, normalized size = 1. \begin{align*} -2\,{\frac{1}{d{a}^{3} \left ( 1+\sin \left ( dx+c \right ) \right ) }}-{\frac{\ln \left ( 1+\sin \left ( dx+c \right ) \right ) }{d{a}^{3}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^3/(a+a*sin(d*x+c))^3,x)

[Out]

-2/d/a^3/(1+sin(d*x+c))-ln(1+sin(d*x+c))/a^3/d

________________________________________________________________________________________

Maxima [A]  time = 0.947007, size = 50, normalized size = 1.28 \begin{align*} -\frac{\frac{2}{a^{3} \sin \left (d x + c\right ) + a^{3}} + \frac{\log \left (\sin \left (d x + c\right ) + 1\right )}{a^{3}}}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^3/(a+a*sin(d*x+c))^3,x, algorithm="maxima")

[Out]

-(2/(a^3*sin(d*x + c) + a^3) + log(sin(d*x + c) + 1)/a^3)/d

________________________________________________________________________________________

Fricas [A]  time = 1.80848, size = 105, normalized size = 2.69 \begin{align*} -\frac{{\left (\sin \left (d x + c\right ) + 1\right )} \log \left (\sin \left (d x + c\right ) + 1\right ) + 2}{a^{3} d \sin \left (d x + c\right ) + a^{3} d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^3/(a+a*sin(d*x+c))^3,x, algorithm="fricas")

[Out]

-((sin(d*x + c) + 1)*log(sin(d*x + c) + 1) + 2)/(a^3*d*sin(d*x + c) + a^3*d)

________________________________________________________________________________________

Sympy [A]  time = 1.86801, size = 450, normalized size = 11.54 \begin{align*} \begin{cases} - \frac{2 \log{\left (\sin{\left (c + d x \right )} + 1 \right )} \sin ^{2}{\left (c + d x \right )}}{2 a^{3} d \sin ^{2}{\left (c + d x \right )} + 4 a^{3} d \sin{\left (c + d x \right )} + 2 a^{3} d} - \frac{4 \log{\left (\sin{\left (c + d x \right )} + 1 \right )} \sin{\left (c + d x \right )}}{2 a^{3} d \sin ^{2}{\left (c + d x \right )} + 4 a^{3} d \sin{\left (c + d x \right )} + 2 a^{3} d} - \frac{2 \log{\left (\sin{\left (c + d x \right )} + 1 \right )}}{2 a^{3} d \sin ^{2}{\left (c + d x \right )} + 4 a^{3} d \sin{\left (c + d x \right )} + 2 a^{3} d} + \frac{\sin ^{4}{\left (c + d x \right )}}{2 a^{3} d \sin ^{2}{\left (c + d x \right )} + 4 a^{3} d \sin{\left (c + d x \right )} + 2 a^{3} d} + \frac{2 \sin ^{3}{\left (c + d x \right )}}{2 a^{3} d \sin ^{2}{\left (c + d x \right )} + 4 a^{3} d \sin{\left (c + d x \right )} + 2 a^{3} d} + \frac{\sin ^{2}{\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )}}{2 a^{3} d \sin ^{2}{\left (c + d x \right )} + 4 a^{3} d \sin{\left (c + d x \right )} + 2 a^{3} d} + \frac{2 \sin ^{2}{\left (c + d x \right )}}{2 a^{3} d \sin ^{2}{\left (c + d x \right )} + 4 a^{3} d \sin{\left (c + d x \right )} + 2 a^{3} d} + \frac{2 \sin{\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )}}{2 a^{3} d \sin ^{2}{\left (c + d x \right )} + 4 a^{3} d \sin{\left (c + d x \right )} + 2 a^{3} d} - \frac{1}{2 a^{3} d \sin ^{2}{\left (c + d x \right )} + 4 a^{3} d \sin{\left (c + d x \right )} + 2 a^{3} d} & \text{for}\: d \neq 0 \\\frac{x \cos ^{3}{\left (c \right )}}{\left (a \sin{\left (c \right )} + a\right )^{3}} & \text{otherwise} \end{cases} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**3/(a+a*sin(d*x+c))**3,x)

[Out]

Piecewise((-2*log(sin(c + d*x) + 1)*sin(c + d*x)**2/(2*a**3*d*sin(c + d*x)**2 + 4*a**3*d*sin(c + d*x) + 2*a**3
*d) - 4*log(sin(c + d*x) + 1)*sin(c + d*x)/(2*a**3*d*sin(c + d*x)**2 + 4*a**3*d*sin(c + d*x) + 2*a**3*d) - 2*l
og(sin(c + d*x) + 1)/(2*a**3*d*sin(c + d*x)**2 + 4*a**3*d*sin(c + d*x) + 2*a**3*d) + sin(c + d*x)**4/(2*a**3*d
*sin(c + d*x)**2 + 4*a**3*d*sin(c + d*x) + 2*a**3*d) + 2*sin(c + d*x)**3/(2*a**3*d*sin(c + d*x)**2 + 4*a**3*d*
sin(c + d*x) + 2*a**3*d) + sin(c + d*x)**2*cos(c + d*x)**2/(2*a**3*d*sin(c + d*x)**2 + 4*a**3*d*sin(c + d*x) +
 2*a**3*d) + 2*sin(c + d*x)**2/(2*a**3*d*sin(c + d*x)**2 + 4*a**3*d*sin(c + d*x) + 2*a**3*d) + 2*sin(c + d*x)*
cos(c + d*x)**2/(2*a**3*d*sin(c + d*x)**2 + 4*a**3*d*sin(c + d*x) + 2*a**3*d) - 1/(2*a**3*d*sin(c + d*x)**2 +
4*a**3*d*sin(c + d*x) + 2*a**3*d), Ne(d, 0)), (x*cos(c)**3/(a*sin(c) + a)**3, True))

________________________________________________________________________________________

Giac [A]  time = 1.17549, size = 47, normalized size = 1.21 \begin{align*} -\frac{\frac{\log \left ({\left | \sin \left (d x + c\right ) + 1 \right |}\right )}{a^{3}} + \frac{2}{a^{3}{\left (\sin \left (d x + c\right ) + 1\right )}}}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^3/(a+a*sin(d*x+c))^3,x, algorithm="giac")

[Out]

-(log(abs(sin(d*x + c) + 1))/a^3 + 2/(a^3*(sin(d*x + c) + 1)))/d